ourserca

(DRAFT) Data Export Procedures

Last updated: December 17, 2012

As a platform for delivering world-class education and advancing the frontiers of online pedagogy,
Coursera is committed to providing academic institutions, instructors, and affiliated researchers with
data collected from online courses for the purposes of improving pedagogy and furthering research into
online educational practices. In this document, we describe Coursera’s current best practices for export
of raw course data, which are designed around two fundamental requirements:

1. Protect students’ right to privacy. Students who participate in Coursera’s online classes do so
with the expectation that Coursera will maintain the privacy of their academic records, as outlined
in the company’s Terms of Service and Privacy Policy.

2. Provide partner institutions with control over data from their own classes. Administrators at
partner institutions should have a simple and secure mechanism for requesting and retrieving data
that permits easy management of data access rights and institution-controlled data redistribution.

This working document is intended to provide insight into what types of data are available from Coursera
for research purposes, instructions on current procedures for obtaining data from Coursera, and guidance
for working with Coursera data exports.

1 Data collection and availability

Currently, two mechanisms of data collection are used across all Coursera classes:

1. Relational database: A database containing all of the content (excluding assets such as lecture
videos, slides, etc) used in the administration of the website of the course session. This database
includes:

e Versioned copies of instructions for all surveys and assessments, including quizzes, home-
works, exams, in-video quizzes, assignments, and peer-graded assessments.
e Timestamped and versioned copies of student responses for all surveys and assessments.

e Timestamped logs of student activities such as lecture watching, assignment submission, and
forum behavior.

e All forum content, including upvote logs and the full text of posts and comments.

e Student registration information.

2. Clickstream logs: Logs for tracking user activity on the course website. Log entries are times-
tamped and record user-specific page views and lecture video interaction (e.g., video seek events).

Internally at Coursera, the relational data for each class are managed by a MySQL database instance,
whereas the clickstream logs are managed by a set of separate, dedicated analytics servers.

2 Relational database exports

2.1 Organization

For research data exports, the relational data are organized into four separate categories, as illustrated
in the following diagram:

Tier 1: Personally-identifying information (PII)
(e.g., names, e-mail addresses)

Tier 2: Unanonymizable data
(e.g., full text of assignment submissions)

Tier 3a: Public forum data Tier 3b: General course data
(e.g., full text of posts, upvotes) (e.g., student responses, grades)

More specifically,

¢ Personally-identifying information (PIl) is information that is directly connected with the iden-
tity of an individual; a more precise description of Pll is provided in Coursera's Terms of Service.
Typically, Pll is required for the administration of a class, but with few exceptions, should not be
required for general research.

e Unanonymizable data consists of student-generated content (such as versioned assignments,
peer-graded assessments, and peer grading student feedback) that may contain Pll about individual
students. For example, many students choose to include their names in their assignments, or may
submit an essay containing personal details for a peer-graded assessment.

e Public forum data includes the full content of the class forums (such as posts, comments,
and upvotes). Although forum data often contain Pll such as names, the full text of the posts
themselves are publicly available on Coursera's website. When used in isolation (i.e., using student
identifiers distinct from those used in other data exports), forum data exports present no extra risk
of identifiability for students, given that the bulk of the content in the export is already publicly
accessible online.

e General course data refer to the remainder of the data from the relational database for each
course, including timestamped student responses for anonymizable assessements (such as in-video
quizzes, standalone quizzes, exams and surveys) and instructor-provided materials (such as assign-
ment instructions and course website content).

As seen in the diagram, the four categories of data are arranged into three tiers according to decreasing
privacy risk:

e Tier 1 contains directly personally-identifying information.
e Tier 2 contains data which is potentially (but not necessarily) personally-identifying.

e Tier 3 contains data which is either not personally-identifying (Tier 3b), or already publicly
available (Tier 3a).

Due to the variation in privacy risks, the differing tiers of data access vary considerably in the degree of
protections that must be put in place.

In the United States, for example, research protections are governed by the Office for Human Research
Protections (OHRP), which is part of the U.S. Department of Health and Human Services. Because of
the potential risks to student privacy, institutional review board (IRB) approval and informed consent
is generally necessary for studies involving the use of Tier 2 data. Observational studies that make use
of only Tier 3 data may sometimes be considered exempt from full IRB scientific review, depending on
the nature of the research project; even in these cases, however, the determination that an investigation
qualifies for exemption must be made by the appropriate review board, and cannot simply be made by
the researcher conducting the study.

Coursera suggests that all researchers intending to engage in educational research with the intent to
publish should consult with their appropriate institutional ethical review board beforehand. Appropriate
regulations may vary in other countries.

2.2 Privacy

In all Coursera courses, all students are associated with a unique numeric identifier known as a Coursera
universal user ID (e.g., 104253). To protect student privacy, Coursera data exports use a hashing-based
anonymization mechanism that replaces the numeric student identifiers in research data exports with
40-character hexadecimal identifiers (e.g., 1acaa5f654b654c654e654dd65ae5f6a79c1378e). For each
course session, two randomly-selected hashing functions are used to convert Coursera universal user
IDs into anonymized hexadecimal identifiers. These two hashing functions are permanently associated
with the course session and will be used for all data exports associated with that session.

The first hashing function (HASH;) is applied to student identifiers for all data groups except the
forum data. The second hashing function (HASH,) is applied to identifiers from the forum data only.
This is summarized in the following table:

Category Identifier

1. Personally-identifying information (PIl) | anon_user_id = HASH; (user_id)
2. Unanonymizable data anon_user_id = HASH; (user_id)
3a. Public forum data forum_user_id = HASH, (user_id)
3b. General course data anon_user_id = HASH; (user_id)

The use of separate hashed identifiers for the forum data is motivated by the fact that many research
projects can be accomplished using only access to Tier 3 data. However, an individual with access to
public forum post data can easily build a partial table of correspondences between the student identifiers
associated with forum post or comment and the actual online identities of each student (since forum
posts are directly searchable online, and the full text of each post or comment provides the necessary
link between the online data and the exported forum data). If the same hashed identifiers were used for
anonymizing course data, then one could easily connect online identities with in-class performance. By
using separate hashed identifiers for each, this type of privacy attack is not possible with access only to
Tier 3 data.

For research that involves assessing the relationship between forum activity and course performance,
it is necessary to establish correspondence between the the various types of identifiers. This can be
done through a three-column table, called the de-anonymization mapping, which translates between
Coursera universal IDs, hashed identifiers for general course data, and hashed identifiers for forum data.
The de-anonymization mapping is generally not included for data exports that require preservation of
anonymity. Generally speaking, however, the de-anonymization mapping should be treated as requiring
similar levels of protection as the Tier 2 unanonymizable data since access to this information has the
potential to allow re-identification.

2.3 Workflow

Currently, Coursera’s recommended process for obtaining data exports is for each partner institution to
appoint a single individual at that institution, known as the data coordinator, to be the point person
in charge of approving and handling data export requests for that institution. In particular, the following
workflow is suggested:

1. A researcher submits a data request to the data coordinator at the partner institution offering the
course.

2. The data coordinator decides whether the data request should be approved or rejected. If approved,
the data coordinator sends an e-mail to CourseOps asking for an export for a particular session.

3. CourseOps processes the data request, and then sends the data coordinator emails containing
time-expiring links where the data (in the form of multiple password-protected zip files) may be
downloaded. The links will expire after 7 days from the time that the request is processed.

4. For security, the data coordinator obtains a single encryption password from CourseOps through a
separate secure communication channel, such as phone, text message, or encrypted off-the-record
instant messaging (e.g., Google Chat). Since e-mails are by default sent over the Internet in
plaintext, regular e-mails do not provide sufficient protection.

5. The data coordinator distributes the appropriate subset of encrypted files to the researcher. The
data coordinator also securely communicates the encryption password to the researcher.

To ensure that all proper protocols are being followed, the data coordinator and CourseOps should be
the primary points-of-contact for the partner institution and Coursera, respectively. Requests should
not come from researchers directly, as CourseOps will have no way of knowing whether the requests are
approved.

In the above scheme, the data coordinator is in charge of overseeing and making data requests
on behalf of researchers at that institution. In particular, the data coordinator ensures compliance of
data requests with security/privacy policies at that institution (e.g., use of encrypted storage media
and communications), and consistency with any applicable ethical review board policies for educational
research at that institution.

2.4 Export format

A complete data export consists of five password-protected zip files:

EXPORTNAME_pii.sql.zip
EXPORTNAME_unanonymizable.sql.zip
EXPORTNAME_anonymized_forum.sql.zip
EXPORTNAME_anonymized_general.sql.zip
EXPORTNAME_hash_mapping.sql.zip

All files are MySQL (v5.5.28) dump files. To load them, first create a MySQL database where the data
will be loaded:

$> mysql -u USERNAME -p

mysql> DROP DATABASE my_session;
mysql> CREATE DATABASE my_session;
mysql> EXIT;

Then, the tables from each file can be loaded into the database as follows:
$> mysql -u USERNAME -p -D my_session < FILENAME.sql

Note that if present, EXPORTNAME _pii.sql.zip should be loaded last as it overwrites the users table
from EXPORTNAME_anonymized_general.sql.zip.

In the following subsections, we provide descriptions of each of the five files above. Please be aware
that as Coursera classes are constantly evolving, the contents of these files may change from over time.

2.4.1 EXPORTNAME_pii.sql.zip

This file contains a single SQL table called users which contains personally-identifiable information
(PII) for each enrolled student. The table schema is as follows:

Field | Type | Null | Key | Default | Extra |

anon_user_id	varchar(255)	NO	PRI	NULL	
email_address	varchar(255)	NO	MUL	NULL	
full_name	varchar(255)	NO		NULL	
locale	varchar(10)	NO		en_US	
timezone	varchar(255)	NO		America/Los_Angeles	
access_group_id	int(11)	NO		NULL	
registration_time	int(11)	NO		o	
last_access_time	int(11)	NO		0	
last_access_ip	varchar(255)	NO		NULL	
email_announcement	tinyint(4)	NO		1	
email_forum	tinyint(4)	NO		1	
wishes_proctored_exam	tinyint(1)	YES		NULL	
email_review	tinyint(4)	NO		1	

2.4.2 EXPORTNAME_unanonymizable.sql.zip

This file contains (up to) two tables:

e kvs_course.*.assignment.submissions: This table is a key/value store for assignment sub-
missions. For classes with no assignments, this table is not present. The schema of this table is
identical to that of all key/value stores throughout the database:

Field	Type	Null	Key	Default	Extra
key	text	NO	PRI	NULL	
value	longtext	YES		NULL	

The types of keys found in this table in practice are:

key_types

+
\
submission.submission_id:* |
submission_aux.submission_id:* |
submission_aux_encoding.submission_id:* |
submission_encoding.submission_id:x* |
submission_feedback.submission_id:* |
submission_feedback_after_hard_close_time.submission_id:*
submission_feedback_after_soft_close_time.submission_id:*

+

—_——— — — — — + — 4

where the asterisk character (*) is used to represent sequences of consecutive digits, which repre-
sent either identifiers or POSIX timestamps.

e kvs_course.*.human_grading: This table is a key/value store for peer-graded assessments.
The schema for this table is identical to that of assignments (and all other key/value stores);
similarly, for certain classes, this table may not be present. Here, the relevant keys here are:

key_types

|

+

| access.one_time_resubmit.user_id_assessment_id:*,x*
| access.user_id_assessment_id:*,*
| resource.assessment_id:*

| resource.backup.assessment_id:*
| resource.backup.assessment_id:*,*
| resource.evaluation_id:*

| resource.overall_evaluation_id:*
| resource.policy.assessment_id:*
| resource.submission_id:*

| resource.submission_id:*.x*
| resource.training_id:*
| self_grading set:*
+

- — - — - — — — — — + — %

2.4.3 EXPORTNAME_anonymized_forum.sql.zip

This file contains all tables related to forum data, including:

e forum_forums: Each row of this table corresponds to a single forum in the discussion forums.

4
+
+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
parent_id	int(11)	NO	MUL	-1	
name	varchar(255)	NO		NULL	
description	text	NO		NULL	
type	enum(’qna’,’forum’)	NO		forum	
deleted	tinyint(4)	NO		0	
can_post	tinyint(4)	NO		0	
show_threads	tinyint(4)	NO		1	
resolved_tag	tinyint(4)	NO		0	
display_order	int(11)	NO		0	
open_time	int(11)	NO		0	

e forum_threads: Each row of this table corresponds to a single forum thread, belonging to a
particular forum.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
forum_id	int(11)	NO	MUL	NULL	
forum_user_id	varchar(255)	NO	MUL	NULL	
posted_time	int(11)	NO		NULL	
last_updated_time	int(11)	NO		NULL	
last_updated_user	int(11)	NO		NULL	
deleted	tinyint(4)	NO		0	
is_spam	tinyint(4)	NO		0	
stickied	tinyint(4)	NO		0	
approved	tinyint(4)	NO		0	
unresolved	tinyint(4)	NO		0	
instructor_replied	tinyint(4)	NO		o	
num_posts	int(11)	NO		1	
num_views	int(11)	NO		0	
votes	int(11)	NO		NULL	
locked	tinyint(4)	NO		0	
anonymous	tinyint(4)	NO		0	
title	text	NO		NULL	

e forum_posts: Each row of this table corresponds to a single forum post, belonging to a forum

thread.
| Field | Type | Null | Key | Default | Extra |
| id | int(11) | NO | PRI | NULL | auto_increment |

thread_id	int(11)	NO	MUL	NULL	
forum_user_id	varchar(255)	NO	MUL	NULL	
post_time	int(11)	NO		NULL	
edit_time	int(11)	NO		-1	
deleted	tinyint(4)	NO		0	
is_spam	tinyint(4)	NO		0	
original	tinyint(4)	NO		0	
stickied	tinyint(4)	NO		0	
approved	tinyint(4)	NO		0	
anonymous	tinyint(4)	NO		0	
votes	int(11)	NO		0	
post_text	text	NO		NULL	
user_agent	text	NO		NULL	
text_type	enum(’markdown’,’html’)	NO		markdown	

forum_comments: Each row of this table corresponds to a single forum comment, which is a reply
to a forum post.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
post_id	int(11)	NO	MUL	NULL	
forum_user_id	varchar(255)	NO	MUL	NULL	
post_time	int(11)	NO		NULL	
deleted	tinyint(4)	NO		0	
is_spam	tinyint(4)	NO		o	
votes	int(11)	NO		NULL	
anonymous	tinyint(4)	NO		0	
comment_text	text	NO		NULL	
user_agent	text	NO		NULL	
text_type	enum(’markdown’,’html’)	NO		markdown	

forum_reporting: This table is used for reporting of inappropriate forum content or technical
issues.

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
forum_user_id	varchar(255)	NO	MUL	NULL	
report_type	enum(’inappropriate’,’technical’)	NO		NULL	
item_type	enum(’post’,’comment’)	NO	MUL	NULL	
item_id	int(11)	NO		NULL	
description	text	NO		NULL	
timestamp	int(11)	NO		NULL	

forum_reputation_record: This table keeps an activity of log of timestamped upvotes/downvotes.

| Field | Type | Null | Key | Default

+ + +

Extra

+ — +

anon_user_id	varchar(255)	NO	PRI	NULL	
pc_id	int(11)	NO	PRI	NULL	
type	enum(’post’,’comment’)	NO	PRI	NULL	
direction	tinyint(4)	NO		NULL	
timestamp	int(11)	NO		-1	

forum_reputation_points: This table keeps track of forum reputation points per user.

+ t + t + +

Field	Type	Null	Key	Default	Extra
forum_user_id	varchar(255)	NO	PRI	NULL	
points	int(11)	NO	MUL	O	

+ + + +

forum_subscribe_forums: This table is used to keep track of e-mail subscriptions to forums.

+ + +

+

Type | Null | Key

Field		Default	Extra		
forum_user_id	varchar(255)	NO	PRI	NULL	
forum_id	int(11)	NO	PRI	NULL	
start_time	int(11)	NO		NULL	

forum_subscribe_threads: This table is used to keep track of e-mail subscriptions to forum
threads.

+ + +

Type | Null

int(11) | NO

+ +

Field		Key	Default	Extra	
forum_user_id	varchar(255)	NO	PRI	NULL	
thread_id	int(11)	NO	PRI	NULL	
start_time			NULL		

4
4

forum_tags: This table keeps track of tag names for forum threads.

+ +

Null | Key

-
-

Field	Type		Default	Extra	
id	int(11)	NO	PRI	NULL	auto_increment
tag_name	varchar(255)	NO	UNI	NULL	

forum_tags_threads: This table keeps track of which tags are associated with which forum
threads.

+ + + + + +

| Field | Type | Null | Key | Default | Extra |
| tag_id | int(11) | NO | PRI | NULL | |
| thread_id | int(11) | NO | PRI | NULL | [
| timestamp | int(11) | NO | MUL | NULL | |

10

e kvs_course.*.forum_readrecord: This table keeps track of the last time that each forum
thread was read by each user. This data is stored as a key/value store, where the key types are:

e activity_log: (Deprecated) This table contains logs of various student-website interactions,
such as forum thread views, upvotes, and downvotes.

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
forum_user_id	varchar(255)	NO		NULL	
module	varchar(255)	NO		NULL	
action	varchar(255)	NO		NULL	
item_id	int(11)	NO		NULL	
metadata	longtext	NO		NULL	
timestamp	int(11)	NO	MUL	NULL	

2.4.4 EXPORTNAME_anonymized_general.sql.zip
This file contains the remainder of the tables that make up the course database, including:

e access_groups: This table lists the different types of privileges that an individual (student, staff
member, administrator) may have on the class website.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	NO		NULL	
default	tinyint(4)	NO		NULL	
allow_site_access	tinyint(4)	NO		1	
forum_title	varchar(255)	NO		NULL	
forum_admin	tinyint(4)	NO		0	
forum_moderate	tinyint(4)	NO		0	
admin_access	tinyint(4)	NO		0	
user_admin	tinyint(4)	NO		0	
wiki_admin	tinyint(4)	NO		0	
wiki_createpage	tinyint(4)	NO		0	
i18n_admin	tinyint(4)	NO		0	
staging_admin	tinyint(4)	NO	I 0		
navbar	tinyint(4)	NO		0	
dev_admin	tinyint(4)	NO		0	
log_admin	tinyint(4)	NO		0	
prereg_access	tinyint(4)	NO		o	
user_level_priority	int(11)	NO		0	

e announcements: This table lists announcements that appear on the class webpage.

11

+

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
title	text	NO		NULL	
message	longtext	NO		NULL	
user_id	int(11)	NO		NULL	
open_time	int(11)	NO		NULL	
close_time	int(11)	NO		NULL	
icon	varchar (255)	NO		NULL	
deleted	tinyint(4)	NO	MUL	©	
email_announcements	enum(’no_email’,’email_staged’,’email_sent’)	NO		NULL	

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
user_id	int(11)	NO	UNI	NULL	
normal_grade	float	YES		NULL	
distinction_grade	float	YES		NULL	
achievement_level	enum(’normal’,’distinction’,’none’)	NO		NULL	

e kvs_course.*.internationalization: This key/value store contains lists of textual substitu-

tions that should be made for the purpose of internationalization.

e late_days_applied: This table is used in conjunction with late_days_left for keeping track
of late day usage.

+

| Field | Type | Null | Key | Default | Extra |

| item_type | enum(’quiz’,’lecture’,’assignment’) | NO | PRI | NULL | |

| item_id | int(11) | NO | PRI | NULL | |

| anon_user_id | varchar (255) | NO | PRI | NULL | |

| late_days_applied | int(11) | NOo | | NULL | |

e late_days_left: This table is used in conjunction with late_days_applied for keeping track

of late day usage.

| Field | Type | Null | Key | Default | Extra |

| anon_user_id | varchar(255) | NO PRI | NULL | |

| late_days_left | int(11) | NO | NULL | |

e navbar_list: This table keeps track of links in the course webpage navigation bar.

12

+

+

e wiki_pages: This table stores metadata associated with wiki pages.

+

e wiki_revisions: This table stores

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
canonical_name	varchar(255)	NO	UNI	NULL	
title	text	NO		NULL	
creator	int(11)	NO		NULL	
created	int(11)	NO		NULL	
locked	tinyint(4)	NO		0	
visible	tinyint(4)	NO		1	
deleted	tinyint(4)	NO		o	
modified	int(11)	NO		NULL	
current_revision	int(11)	NO		NULL	

metadata associated with changes to wiki content.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
page_id	int(11)	NO	MUL	NULL	
user	int(11)	NO		NULL	
timestamp	int(11)	NO		NULL	
comments	varchar(255)	NO		NULL	

e kvs_course.*.wiki: This table contains content from the course wiki.

e users: This table is a duplicate of the table found in the EXPORTNAME _pii.sql.zip except that
student names and e-mail addresses have been removed.

13

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar (255)	NO		NULL	
icon	varchar(255)	NO		NULL	
link_type	enum(’circuit’,’wiki’,’link’,’window_link’,’heading’)	NO		NULL	
link_data	varchar(255)	NO		NULL	
order	int(11)	NO	MUL	O	

+
+
4

+
+

Field	Type	Null	Key	Default	Extra
anon_user_id	varchar(255)	NO	PRI	NULL	
locale	varchar(10)	NO		en_US	
timezone	varchar(255)	NO		America/Los_Angeles	
access_group_id	int(11)	NO		NULL	
registration_time	int(11)	NO		0	
last_access_time	int(11)	NO		0	
last_access_ip	varchar(255)	NO		NULL	
email_announcement	tinyint(4)	NO		1	
email_forum	tinyint(4)	NO		1	
wishes_proctored_exam	tinyint(1)	YES		NULL	
email_review	tinyint(4)	NO		1	
sections: This table lists the sections of the course.

| Field | Type | Null | Key | Default | Extra |

| id | int(11) | NO | PRI | NULL | auto_increment |

| title | varchar(255) | NO | | NULL | |

| display_order | int(11) | NO | I 0 | |

| last_published_date | int(11) | NO | | 0 | |

| visible_date | int(11) | NO | | -1 | |

items_sections: This table describes how quizzes, lectures, and assignments are organized
within sections.

Field | Type

	Null	Key	Default	Extra	
item_type	enum(’quiz’,’lecture’,’assignment’)	NO	PRI	NULL	
item_id	int(11)	NO	PRI	NULL	
section_id	int(11)	NO		NULL	
order	int(11)	NO		NULL	

quiz_metadata: This table describes the various quizzes in the course session.

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
parent_id	int(11)	NO		-1	
open_time	int(11)	YES		NULL	
soft_close_time	int(11)	YES		NULL	
hard_close_time	int(11)	YES		NULL	
maximum_submissions	int(11)	NO		100	
title	varchar (255)	YES		NULL	
duration	int(11)	NO		NULL	
quiz_type	enum(’quiz’,’video’,’exam’, ’homework’,’survey’)	NO		NULL	
proctoring_requirement	enum(’none’,’proctored’,’nonproctored’)	NO		none	

14

=
o
=
(=
=
[

deleted | tinyint(4)
last_updated | int(11)

=
o
o

+ — —

+
+

+ — —

+

e quiz_submission_metadata: This table provides information on each student quiz submission
during the course.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_id	int(11)	NO	MUL	NULL	
anon_user_id	varchar(255)	NO	MUL	NULL	
submission_time	int(11)	NO		NULL	
submission_number	int(11)	NO		NULL	
raw_score	float	YES		NULL	
grading_error	tinyint(1)	NO	MUL	O	
keytrac_status	tinyint(4)	YES		0	
authentication_photo	varchar(255)	YES		NULL	
identity_authenticated	tinyint(4)	YES		0	

e kvs_course.*.quiz: This key/value store contains the actual quizzes (in XML format) as well
as actual student responses for each submission.

+

key_types

options.quiz_id:*
saved.quiz_id:*.user_id:*
submission.submission_id:*
template.template_id:default_templates
xml.quiz_id:*

xml.quiz_id:*.backup:*

+——— — — — + — +

+—— — — — — 4+ —

e lecture_metadata: This table provides a general description of each lecture from the course.

Field | Type Null | Key | Default | Extra

id	int(11)	NO	PRI	NULL	auto_increment
parent_id	int(11)	NO	[-1		
open_time	int(11)	YES		NULL	
soft_close_time	int(11)	YES		NULL	
hard_close_time	int(11)	YES		NULL	
maximum_submissions	int(11)	NO		100	
title	varchar(255)	YES		NULL	
source_video	varchar(255)	YES		NULL	
video_length	float	YES		NULL	
quiz_id	int(11)	YES		NULL	
final	tinyint(4)	NO		0	
deleted	tinyint(4)	NO		0	
last_updated	int(11)	NO		0	

15

e lecture_submission_metadata:
watching a lecture.

This table contains a row

for each time that a student begins

+

+

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_id	int(11)	NO	MUL	NULL	
anon_user_id	varchar (255)	NO	MUL	NULL	
submission_time	int(11)	NO		NULL	
submission_number	int(11)	NO		NULL	
raw_score	float	YES		NULL	
action	enum(’view’,’download’)	NO		view	

e kvs_course.*.lecture: This key/value store contains specific metadata corresponding to each
lecture.

+

key_types

+ —— — — +

api.list

resources.lecture_id:*
sources.lecture_id:*
subtitles.lecture_id:*

- — — + — +

e assignment_metadata:

This table describes assignments from the class.

+

+

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
parent_id	int(11)	NO		-1	
open_time	int(11)	YES		NULL	
soft_close_time	int(11)	YES		NULL	
hard_close_time	int(11)	YES		NULL	
title	varchar(255)	YES		NULL	
maximum_submissions	int(11)	NO		NULL	
deleted	tinyint(4)	NO		0	
last_updated	int(11)	NO		0	

this table corresponds to a single assignment part.

assignment_part_metadata: An assignment may be composed of several

parts; each row of

16

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
assignment_id	int(11)	NO	MUL	NULL	
sid	varchar(255)	NO	MUL	NULL	
part_order	int(11)	NO		NULL	
maximum_score	int(11)	NO		NULL	

retry_delay	int(11)	NO		NULL	
optional	tinyint(1)	NO		NULL	
maximum_submissions	int(11)	NO		NULL	
title	varchar(255)	NO		NULL	
grader	varchar(255)	NO		NULL	
deleted	tinyint(4)	NO		NULL	

assignment_submission_metadata: This table keeps track of student submissions of assign-
ment parts.

+

YES

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_id	int(11)	NO	MUL	NULL	
user_id	int(11)	NO	MUL	NULL	

submission_time	int(11)	NO		NULL	
submission_number	int(11)	NO		NULL	
raw_score	float			NULL	

kvs_course.*.assignment.data: This table contains the actual instructions for each assign-
ment.

key_types

instructions.assignment_id:x*
options.part_id:*

+ —— + — 4+
+ —— + — 4+

hg_assessment_metadata: This table provides an overview of all of the peer grading assignments
in the course session.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
user_id	int(11)	NO		NULL	
open_time	int(11)	NO		NULL	
submission_deadline	int(11)	NO		NULL	
submission_deadline_grace_period	int(11)	NO		NULL	
grading_start	int(11)	NO		NULL	
grading deadline	int(11)	NO		NULL	
grading_deadline_grace_period	int(11)	NO		NULL	
display_grades_time	int(11)	NO		NULL	
title	varchar(255)	NO		NULL	
max_grade	float	NO		NULL	
deleted	tinyint(4)	NO	MUL	NULL	

hg_assessment_submission_metadata: This table contains information about every student
submission of a peer-grading assessment.

17

.{.
+
4

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
author_id	int(11)	NO	MUL	NULL	
title	varchar(50)	YES		NULL	
assessment_id	int(11)	NO	MUL	NULL	
included_in_training	tinyint(1)	NO	MUL	O	
included_in_grading	tinyint(1)	NO	MUL	1	
included_in_ground_truth	tinyint(1)	NO	MUL	NULL	
excluded_from_circulation	tinyint(1)	NO	MUL	NULL	
anonymized_if_showcased	tinyint(1)	NO		NULL	
blank	tinyint(1)	NO	MUL	NULL	
start_time	int(11)	NO		NULL	
save_time	int(11)	NO		NULL	
submit_time	int(11)	YES		NULL	I
allocation_score	float	YES	MUL	NULL	

hg_assessment_overall_evaluation_metadata: This table provides a summary of the grade
information for a peer-graded assessment, and in particular, contains the final grade for each
student submission based on its evaluations, staff adjustments, and any other late day penalties.

Type | Null | Key | Default | Extra

Field					
id	int(11)	NO	PRI	NULL	auto_increment
submission_id	int(11)	NO	UNI	NULL	
grade	float	YES		NULL	
final_grade	float	YES		NULL	
staff_grade	float	YES		NULL	
peer_grade	float	YES		NULL	
self_grade	float	YES		NULL	

hg_assessment_evaluation_metadata: This table contains information on a single evaluation
submitted for a peer-graded assessment.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
author_id	int(11)	NO	MUL	NULL	
author_group	enum(’student’,’staff’)	NO	MUL	student	
submission_id	int(11)	NO	MUL	NULL	
start_time	int(11)	NO		NULL	
save_time	int(11)	NO		NULL	
submit_time	int(11)	YES		NULL	
grade	float	YES		NULL	I
ignore	tinyint(1)	NOo		NULL	

hg_assessment_calibration_gradings: This table contains extra metadata (in addition to
the columns in hg_assessment_evaluation_metadata) for evaluations from the staff.

18

+

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_number	int(8)	NO	MUL	NULL	
calibration_set_id	int(11)	NO	MUL	NULL	
evaluation_id	int(11)	NO		NULL	
type	enum(’training’,’groundTruth’,’staffGradeOnly’)	YES		NULL	
submit_time	int(11)	YES	MUL	NULL	

hg_assessment_peer_grading_metadata: This table contains extra metadata (in addition to
the columns in hg_assessment_evaluation_metadata) for evaluations from peers.

+
+

hg_assessment_peer_grading_set_metadata: This table
peer grading evaluations from an evaluator.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_number	int(8)	NO	MUL	NULL	
peer_grading_set_id	int(11)	NO	MUL	NULL	
evaluation_id	int(11)	NO		NULL	
submit_time	int(11)	YES	MUL	NULL	
required	int(1)	NO		NULL	[
last_required	int(1)	NO		NULL	

collects information for a round of

Field | Type Key |

| Null Default | Extra

id	int(11)	NO	PRI	NULL	auto_increment
user_id	int(11)	NO	MUL	NULL	
assessment_id	int(11)	NO	MUL	NULL	
start_time	int(11)	NO		NULL	
finish_time	int(11)	YES		NULL	
status	enum(’completed’,’ongoing’)	NO		NULL	

hg_assessment_self_grading set_metadata: This table contains extra metadata (in addition
to the columns in hg_assessment_evaluation_metadata) for evaluations from an individual on

his/her own submission.

Type | Null | Key

19

Field		Default	Extra		
id	int(11)	NO	PRI	NULL	auto_increment
user_id	int(11)	NO	MUL	NULL	
assessment_id	int(11)	NO	MUL	NULL	
start_time	int(11)	NO		NULL	
finish_time	int(11)	YES		NULL	
status	enum(’completed’,’ongoing’)	NO		NULL	

e hg assessment_training_metadata: This table contains extra metadata (in addition to the
columns in hg_assessment_evaluation_metadata) for evaluations that occur during the train-

ing phase.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
item_number	int(8)	NO	MUL	NULL	
training_set_id	int(11)	NO	MUL	NULL	
evaluation_id	int(11)	NO		NULL	
submit_time	int(11)	YES	MUL	NULL	

e hg_assessment_training_set_metadata: This table collects information for a round of training

evaluations.

Field	Type	Null	Key	Default	Extra
id	int(11)	NO	PRI	NULL	auto_increment
user_id	int(11)	NO	MUL	NULL	
assessment_id	int(11)	NO	MUL	NULL	
start_time	int(11)	NO		NULL	
finish_time	int(11)	YES		NULL	
status	enum(’pass’,’fail’,’ongoing’)	NO		NULL	

2.5 EXPORTNAME_hash_mapping.sql.zip

This file contains a single SQL table called hash_mapping which contains a mapping between Coursera
universal IDs, general anonymized user IDs, and forum anonymized user IDs. The table schema is as
follows:

Field	Type	Null	Key	Default	Extra
user_id	int(11)	NO		NULL	
anon_user_id	varchar(255)	NO	PRI	NULL	
forum_user_id	varchar(255)	NO		NULL	

3 Clickstream data export

To be added later.

4 Frequently asked questions

1. How will anonymization be performed?

20

Anonymization will be performed on a per-session basis. That is, anonymized user IDs will be
comparable across multiple data dumps for a given session. Anonymized user IDs will not be shared
across different sessions at a partner institution, however, so as to prevent potential identification
based on the set of sessions taken.

For example, by observing that only one student has taken classes 1, 3, 5, and 6 at a particular
partner institution, a researcher may be able to determine the identity of the student by searching
through the publicly visible “user profile” pages on the Coursera website, which list specifically
which courses a user has taken.

. How do | combine anonymized datasets from multiple sessions that are taught at my
institution?

Combining data across multiple sessions requires the data coordinator at the partner institution to
use the de-anonymization mappings for the respective sessions in order to identify corresponding
students. As described in the previous question, pooling information from multiple sessions has
the potential to reveal potentially identifying information. In the model described here, the data
coordinator is responsible for ensuring that combining datasets is in accordance with institutional
IRB requirements for student privacy.

. How can | obtain datasets for sessions offered at other universities?

Currently, Coursera's agreements with partner institutions only permit Coursera to share data
from sessions with researchers at the institution sponsoring that class. To obtain data for a
session sponsored by a different partner institution, researchers should directly contact the data
coordinator at that institution. Contact information for data coordinators may be obtained through
CourseOps.

. How do | combine anonymized datasets from multiple sessions at the different partner
institution?

This process requires de-anonymization, and is essentially identical to the process for combining
data across sessions at a single partner institution. Again, data coordinators at each partner insti-
tution are responsible for ensuring that data sharing is consistent with all IRB privacy requirements.

. Currently, the “admin” interface for each class has a number of tools that allow export
of data of various forms (e.g., “Export Detailed Quiz Responses”). Should | use these
data exports for research?

The above tools are intended for teaching staff use, but are not intended for research use, since
they contain universal user IDs, and in some cases, student names! All necessary information for
research should be accessible through the raw database dumps for each class.

21

